How Humans Benefit from Stressed Plants

Appropriating Plant Defenses

Image Credit: Hernan Pinera / Flickr. This image has been modified.

Plants live the ultimate sedentary lifestyle—most of us usually think of plants more as objects than as organisms. Because plants can’t move, they’ve had to evolve a whole other way to escape threats to their well-being. Plants can “sense and respond dynamically to all sorts of stimuli: chemical concentrations in the air and soil, water, touch, motion, vibration, pathogens, predators, and, of course, light.” How do they respond? Biochemically. They manufacture, from scratch, a dizzying array of compounds to deal with specific threats.

If we get too hot, we can move into the shade. If plants get too hot, they’re stuck—they are the shade! As a result, “the complexity of the plant stress response humbles that of animals. Plants and their stress response have been evolving for almost a billion years.” And in that time they’ve created a whole chemistry lab of protective substances, some of which can induce similarly protective responses in those of us who eat them.

The “best grapes in terms of health benefit often grow in relatively dry, sun-exposed, infertile soil. Similarly, drought-stressed strawberries have more antioxidants and phytonutrients. Indeed, commonly consumed foods like lettuce and fruits can be nutritionally enhanced by cold stress, light stress, water deficit, or nutrient deficit stress.” Why are stressed plants often the healthiest?

Studies (such as those highlighted in my video, Appropriating Plant Defenses) suggest that plants and animals largely share the same molecular pathways in order to respond to stress, so it’s conceivable that a molecule produced in plants can also be effective in people. Plants have DNA; humans have DNA. The UV rays in sunlight can damage the DNA in plants in the same way it can damage our DNA (by creating free radicals). Plants figured out how to cook up all these complex antioxidants, and instead of reinventing the wheel, animals can just expropriate those antioxidants from plants and commandeer them for the same purpose.

We get attacked by bacteria; plants and fungi get attacked by bacteria. When a particular fungus is getting muscled in on by bacteria, it creates a molecule called penicillin–provided free for us.

When plants get infected, they produce aspirin, which can come in handy when we get infected. Plants heal wounds; we heal wounds, using similar fatty-acid signaling systems. It is “increasingly evident that plants and animals differ less than we thought in how we respond to stimuli, sharing elements of fatty acid, protein, steroidal, neurotransmitter, free radical, nitric oxide, and even plant growth hormone signaling systems.” So in a sense, we’re just opening up nature’s drug store when we pull out the crisper in our fridge.

This whole co-evolution concept reminds me of Human Neurotransmitters In Plants and The Broccoli Receptor: Our First Line of Defense.

More on the power of plants in Power Plants.

Some of the wilder things that Phytochemicals: The Nutrition Facts Missing from the Label can do are explored in:

We evolved eating a lot of plants: Paleolithic Lessons.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my videos for free by clicking here and watch my full 2012 – 2015 presentations Uprooting the Leading Causes of Death, More than an Apple a Day, From Table to Able, and Food as Medicine.

Pin It on Pinterest

Share This